On C3-like Finsler metrics under Ricci flow

نویسندگان

چکیده

In this paper we have studied the class of Finsler metrics, called C3-like metrics which satisfy un-normal and normal Ricci flow equation and
 proved that such are Einstein.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On C3-Like Finsler Metrics

In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.

متن کامل

Nonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry

In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...

متن کامل

Non-negative Ricci Curvature on Closed Manifolds under Ricci Flow

In this short paper we show that non-negative Ricci curvature is not preserved under Ricci flow for closed manifolds of dimensions four and above, strengthening a previous result of Knopf for complete non-compact manifolds of bounded curvature. This brings down to four dimensions a similar result Böhm and Wilking have for dimensions twelve and above. Moreover, the manifolds constructed here are...

متن کامل

Generalized Douglas-Weyl Finsler Metrics

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

متن کامل

A Remark on Ricci Flow of Left Invariant Metrics

We prove that the Ricci flow equation for left invariant metrics on Lie groups reduces to a first order ordinary differential equation for a map Q : (−a, a) → UT , where UT is the group of upper triangular matrices. We decompose the matrix Rij of Ricci tensor coordinates with respect to an orthonormal frame field Ei into a sum 1 Rij + 2 Rij + 3 Rij + 4 Rij such that, for any Ei′ = U i i′Ei with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the "Transilvania" University of Bra?ov

سال: 2022

ISSN: ['2344-2034', '2344-2026']

DOI: https://doi.org/10.31926/but.mif.2022.2.64.2.7